Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.137
Filtrar
1.
Theranostics ; 14(6): 2379-2395, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38646644

RESUMO

Background: It is poorly understood what cellular types participate in ductular reaction (DR) and whether DR facilitates recovery from injury or accelerates hepatic fibrosis. The aim of this study is to gain insights into the role of hepatic progenitor cell (HPC)-originated DR during fibrotic progression. Methods: DR in liver specimens of PBC, chronic HBV infection (CHB) or NAFLD, and four rodent fibrotic models by different pathogenic processes was evaluated. Gli1 expression was inhibited in rodent models or cell culture and organoid models by AAV-shGli1 or treating with GANT61. Results: Severity of liver fibrosis was positively correlated with DR extent in patients with PBC, CHB or NAFLD. HPCs were activated, expanded, differentiated into reactive cholangiocytes and constituted "HPC-originated DR", accompanying with exacerbated fibrosis in rodent models of HPC activation & proliferation (CCl4/2-AAF-treated), Μdr2-/- spontaneous PSC, BDL-cholestatic fibrosis or WD-fed/CCl4-treated NASH-fibrosis. Gli1 expression was significantly increased in enriched pathways in vivo and in vitro. Enhanced Gli1 expression was identified in KRT19+-reactive cholangiocytes. Suppressing Gli1 expression by administration of AAV-shGli1 or GANT61 ameliorated HPC-originated DR and fibrotic extent. KRT19 expression was reduced after GANT61 treatment in sodium butyrate-stimulated WB-F344 cells or organoids or in cells transduced with Gli1 knockdown lentiviral vectors. In contrast, KRT19 expression was elevated after transducing Gli1 overexpression lentiviral vectors in these cells. Conclusions: During various modes of chronic injury, Gli1 acted as an important mediator of HPC activation, expansion, differentiation into reactive cholangiocytes that formed DR, and subsequently provoked hepatic fibrogenesis.


Assuntos
Proteínas Hedgehog , Cirrose Hepática , Transdução de Sinais , Células-Tronco , Proteína GLI1 em Dedos de Zinco , Animais , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Proteínas Hedgehog/metabolismo , Humanos , Células-Tronco/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Camundongos , Ratos , Masculino , Piridinas/farmacologia , Pirimidinas/farmacologia , Modelos Animais de Doenças , Fígado/patologia , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Feminino , Hepatite B Crônica/metabolismo , Hepatite B Crônica/patologia , Hepatite B Crônica/complicações , Camundongos Endogâmicos C57BL , Diferenciação Celular
2.
J Exp Clin Cancer Res ; 43(1): 83, 2024 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-38493151

RESUMO

BACKGROUND: Tumor angiogenesis inhibitors have been applied for non-small cell lung cancer (NSCLC) therapy. However, the drug resistance hinders their further development. Intercellular crosstalk between lung cancer cells and vascular cells was crucial for anti-angiogenenic resistance (AAD). However, the understanding of this crosstalk is still rudimentary. Our previous study showed that Glioma-associated oncogene 1 (Gli1) is a driver of NSCLC metastasis, but its role in lung cancer cell-vascular cell crosstalk remains unclear. METHODS: Conditioned medium (CM) from Gli1-overexpressing or Gli1-knockdown NSCLC cells was used to educate endothelia cells and pericytes, and the effects of these media on angiogenesis and the maturation of new blood vessels were evaluated via wound healing assays, Transwell migration and invasion assays, tube formation assays and 3D coculture assays. The xenograft model was conducted to establish the effect of Gli1 on tumor angiogenesis and growth. Angiogenic antibody microarray analysis, ELISA, luciferase reporte, chromatin immunoprecipitation (ChIP), bFGF protein stability and ubiquitination assay were performed to explore how Gli1 regulate bFGF expression. RESULTS: Gli1 overexpression in NSCLC cells enhanced the endothelial cell and pericyte motility required for angiogenesis required for angiogenesis. However, Gli1 knockout in NSCLC cells had opposite effect on this process. bFGF was critical for the enhancement effect on tumor angiogenesis. bFGF treatment reversed the Gli1 knockdown-mediated inhibition of angiogenesis. Mechanistically, Gli1 increased the bFGF protein level by promoting bFGF transcriptional activity and protein stability. Importantly, suppressing Gli1 with GANT-61 obviously inhibited angiogenesis. CONCLUSION: The Gli1-bFGF axis is crucial for the crosstalk between lung cancer cells and vascular cells. Targeting Gli1 is a potential therapeutic approach for NSCLC angiogenesis.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Neoplasias Pulmonares/metabolismo , Pericitos/metabolismo , Pericitos/patologia , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , 60489 , Neovascularização Patológica/genética , Neovascularização Patológica/patologia , Movimento Celular , Linhagem Celular Tumoral , Proliferação de Células
3.
Sci Rep ; 14(1): 7327, 2024 03 27.
Artigo em Inglês | MEDLINE | ID: mdl-38538763

RESUMO

Osteosarcoma is the most prevalent bone tumor in pediatric patients. Neoadjuvant chemotherapy has improved osteosarcoma patient survival, however the 5-year survival rate for localized osteosarcoma is 75% with a 30-50% recurrence rate. We, therefore, sought to identify a prognostic gene signature which could predict poor prognosis in localized osteosarcoma patients. Using the TARGET osteosarcoma transcriptomic dataset, we identified a 13-hub gene signature associated with overall survival and time to death of localized osteosarcoma patients, with the high-risk group showing a 22% and the low-risk group showing 100% overall survival. Furthermore, network analysis identified five modules of co-expressed genes that significantly correlated with survival, and identified 65 pathways enriched across 3 modules, including Hedgehog signaling, which includes 2 of the 13 genes, IHH and GLI1. Subsequently, we demonstrated that GLI antagonists inhibited growth of a recurrent localized PDX-derived cell line with elevated IHH and GLI1 expression, but not a non-relapsed cell line with low pathway activation. Finally, we show that our signature outperforms previously reported signatures in predicting poor prognosis and death within 3 years in patients with localized osteosarcoma.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Criança , Prognóstico , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Osteossarcoma/patologia , Neoplasias Ósseas/metabolismo
4.
FASEB J ; 38(6): e23568, 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38522021

RESUMO

The development of musculoskeletal tissues such as tendon, enthesis, and bone relies on proliferation and differentiation of mesenchymal progenitor cells. Gli1+ cells have been described as putative stem cells in several tissues and are presumed to play critical roles in tissue formation and maintenance. For example, the enthesis, a fibrocartilage tissue that connects tendon to bone, is mineralized postnatally by a pool of Gli1+ progenitor cells. These cells are regulated by hedgehog signaling, but it is unclear if TGFß signaling, necessary for tenogenesis, also plays a role in their behavior. To examine the role of TGFß signaling in Gli1+ cell function, the receptor for TGFß, TbR2, was deleted in Gli1-lineage cells in mice at P5. Decreased TGFß signaling in these cells led to defects in tendon enthesis formation by P56, including defective bone morphometry underlying the enthesis and decreased mechanical properties. Immunohistochemical staining of these Gli1+ cells showed that loss of TGFß signaling reduced proliferation and increased apoptosis. In vitro experiments using Gli1+ cells isolated from mouse tail tendons demonstrated that TGFß controls cell proliferation and differentiation through canonical and non-canonical pathways and that TGFß directly controls the tendon transcription factor scleraxis by binding to its distant enhancer. These results have implications in the development of treatments for tendon and enthesis pathologies.


Assuntos
Proteínas Hedgehog , Fator de Crescimento Transformador beta , Animais , Camundongos , Proteínas Hedgehog/genética , Proteína GLI1 em Dedos de Zinco/genética , Tendões , Transdução de Sinais
5.
Aging (Albany NY) ; 16(6): 5123-5148, 2024 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-38498906

RESUMO

The Hedgehog (Hh) signaling pathway has been implicated in the pathogenesis of various cancers. However, the roles of the downstream GLI family (GLI1, GLI2, and GLI3) in tumorigenesis remain elusive. This study aimed to unravel the genetic alterations of GLI1/2/3 in cancer and their association with the immune microenvironment and related signaling pathways. Firstly, we evaluated the expression profiles of GLI1/2/3 in different cancer types, analyzed their prognostic and predictive values, and assessed their correlation with tumor-infiltrating immune cells. Secondly, we explored the relationships between GLI1/2/3 and genetic mutations, epigenetic modifications, and clinically relevant drugs. Finally, we performed enrichment analysis to decipher the underlying mechanisms of GLI1/2/3 in cancer initiation and progression. Our results revealed that the expression levels of GLI1/2/3 were positively correlated in most cancer tissues, suggesting a cooperative role of these factors in tumorigenesis. We also identified tissue-specific expression patterns of GLI1/2/3, which may reflect the distinct functions of these factors in different cell types. Furthermore, GLI1/2/3 expression displayed significant associations with poor prognosis in several cancers, indicating their potential as prognostic biomarkers and therapeutic targets. Importantly, we found that GLI1/2/3 modulated the immune microenvironment by regulating the recruitment, activation, and polarization of cancer-associated fibroblasts, endothelial cells, and macrophages. Additionally, functional enrichment analyses indicated that GLI1/2/3 are involved in the regulation of epithelial-mesenchymal transition (EMT). Together, our findings shed new light on the roles of GLI1/2/3 in tumorigenesis and provide a potential basis for the development of novel therapeutic strategies targeting GLI-mediated signaling pathways in cancer.


Assuntos
Neoplasias , Fatores de Transcrição , Humanos , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Células Endoteliais/metabolismo , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias/genética , Prognóstico , Carcinogênese , Análise de Célula Única , Microambiente Tumoral/genética
6.
Sci Transl Med ; 16(740): eadd6570, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38536934

RESUMO

Fibrotic diseases impose a major socioeconomic challenge on modern societies and have limited treatment options. Adropin, a peptide hormone encoded by the energy homeostasis-associated (ENHO) gene, is implicated in metabolism and vascular homeostasis, but its role in the pathogenesis of fibrosis remains enigmatic. Here, we used machine learning approaches in combination with functional in vitro and in vivo experiments to characterize adropin as a potential regulator involved in fibroblast activation and tissue fibrosis in systemic sclerosis (SSc). We demonstrated consistent down-regulation of adropin/ENHO in skin across multiple cohorts of patients with SSc. The prototypical profibrotic cytokine TGFß reduced adropin/ENHO expression in a JNK-dependent manner. Restoration of adropin signaling by therapeutic application of bioactive adropin34-76 peptides in turn inhibited TGFß-induced fibroblast activation and fibrotic tissue remodeling in primary human dermal fibroblasts, three-dimensional full-thickness skin equivalents, mouse models of bleomycin-induced pulmonary fibrosis and sclerodermatous chronic graft-versus-host-disease (sclGvHD), and precision-cut human skin slices. Knockdown of GPR19, an adropin receptor, abrogated the antifibrotic effects of adropin in fibroblasts. RNA-seq demonstrated that the antifibrotic effects of adropin34-76 were functionally linked to deactivation of GLI1-dependent profibrotic transcriptional networks, which was experimentally confirmed in vitro, in vivo, and ex vivo using cultured human dermal fibroblasts, a sclGvHD mouse model, and precision-cut human skin slices. ChIP-seq confirmed adropin34-76-induced changes in TGFß/GLI1 signaling. Our study characterizes the TGFß-induced down-regulation of adropin/ENHO expression as a potential pathomechanism of SSc as a prototypical systemic fibrotic disease that unleashes uncontrolled activation of profibrotic GLI1 signaling.


Assuntos
Escleroderma Sistêmico , Camundongos , Animais , Humanos , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/farmacologia , Fibrose , Escleroderma Sistêmico/metabolismo , Fibroblastos/patologia , Fator de Crescimento Transformador beta/metabolismo , Pele/patologia , Células Cultivadas , Modelos Animais de Doenças , Bleomicina/metabolismo , Bleomicina/farmacologia , Proteínas do Tecido Nervoso/metabolismo , Receptores de Neurotransmissores/metabolismo , Receptores Acoplados a Proteínas G/metabolismo
7.
EMBO Rep ; 25(4): 1773-1791, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38409269

RESUMO

Skeletal growth promoted by endochondral ossification is tightly coordinated by self-renewal and differentiation of chondrogenic progenitors. Emerging evidence has shown that multiple skeletal stem cells (SSCs) participate in cartilage formation. However, as yet, no study has reported the existence of common long-lasting chondrogenic progenitors in various types of cartilage. Here, we identify Gli1+ chondrogenic progenitors (Gli1+ CPs), which are distinct from PTHrP+ or FoxA2+ SSCs, are responsible for the lifelong generation of chondrocytes in the growth plate, vertebrae, ribs, and other cartilage. The absence of Gli1+ CPs leads to cartilage defects and dwarfishness phenotype in mice. Furthermore, we show that the BMP signal plays an important role in self-renewal and maintenance of Gli1+ CPs. Deletion of Bmpr1α triggers Gli1+ CPs quiescence exit and causes the exhaustion of Gli1+ CPs, consequently disrupting columnar cartilage. Collectively, our data demonstrate that Gli1+ CPs are common long-term chondrogenic progenitors in multiple types of cartilage and are essential to maintain cartilage homeostasis.


Assuntos
Cartilagem , Condrogênese , Animais , Camundongos , Proteína GLI1 em Dedos de Zinco/genética , Condrogênese/genética , Condrócitos , Osteogênese , Diferenciação Celular
8.
Nat Commun ; 15(1): 987, 2024 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-38307877

RESUMO

Aberrant activation of sonic hedgehog (SHH) signaling and its effector transcriptional factor GLI1 are essential for oncogenesis of SHH-dependent medulloblastoma (MBSHH) and basal cell carcinoma (BCC). Here, we show that SHH inactivates p38α (MAPK14) in a smoothened-dependent manner, conversely, p38α directly phosphorylates GLI1 on Ser937/Ser941 (human/mouse) to induce GLI1's proteasomal degradation and negates the transcription of SHH signaling. As a result, Gli1S941E loss-of-function knock-in significantly reduces the incidence and severity of smoothened-M2 transgene-induced spontaneous MBSHH, whereas Gli1S941A gain-of-function knock-in phenocopies Gli1 transgene in causing BCC-like proliferation in skin. Correspondingly, phospho-Ser937-GLI1, a destabilized form of GLI1, positively correlates to the overall survival rate of children with MBSHH. Together, these findings indicate that SHH-induced p38α inactivation and subsequent GLI1 dephosphorylation and stabilization in controlling SHH signaling and may provide avenues for future interventions of MBSHH and BCC.


Assuntos
Neoplasias Cerebelares , Meduloblastoma , Animais , Criança , Humanos , Camundongos , Neoplasias Cerebelares/genética , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Meduloblastoma/patologia , Oncogenes , Fosforilação , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
9.
BMC Musculoskelet Disord ; 25(1): 180, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38413962

RESUMO

PURPOSE: Previous studies have shown that DNA methyltransferase 3b (Dnmt3b) is the only Dnmt responsive to fracture repair and Dnmt3b ablation in Prx1-positive stem cells and chondrocyte cells both delayed fracture repair. Our study aims to explore the influence of Dnmt3b ablation in Gli1-positive stem cells in fracture healing mice and the underlying mechanism. METHODS: We generated Gli1-CreERT2; Dnmt3bflox/flox (Dnmt3bGli1ER) mice to operated tibia fracture. Fracture callus tissues of Dnmt3bGli1ER mice and control mice were collected and analyzed by X-ray, micro-CT, biomechanical testing, histopathology and TUNEL assay. RESULTS: The cartilaginous callus significantly decrease in ablation of Dnmt3b in Gli1-positive stem cells during fracture repair. The chondrogenic and osteogenic indicators (Sox9 and Runx2) in the fracture healing tissues in Dnmt3bGli1ER mice much less than control mice. Dnmt3bGli1ER mice led to delayed bone callus remodeling and decreased biomechanical properties of the newly formed bone during fracture repair. Both the expressions of Caspase-3 and Caspase-8 were upregulated in Dnmt3bGli1ER mice as well as the expressions of BCL-2. CONCLUSIONS: Our study provides an evidence that Dnmt3b ablation Gli1-positive stem cells can affect fracture healing and lead to poor fracture healing by regulating apoptosis to decrease chondrocyte hypertrophic maturation.


Assuntos
Calo Ósseo , Fraturas da Tíbia , Animais , Camundongos , Apoptose , Calo Ósseo/patologia , Consolidação da Fratura/fisiologia , Fraturas da Tíbia/cirurgia , Proteína GLI1 em Dedos de Zinco
10.
Zhonghua Zhong Liu Za Zhi ; 46(2): 99-107, 2024 Feb 23.
Artigo em Chinês | MEDLINE | ID: mdl-38418183

RESUMO

Objective: To explore the function and mechanism of transcription factor En1 in esophageal squamous cell carcinoma (ESCC). Methods: The correlations of En1 with prognosis were analyzed using the overall survival data of 9 397 pan-cancer patients and progression-free survival data of 4 349 pan-cancer patients from The Cancer Genome Atlas (TCGA) database. The En1 expression data in 53 and 155 cases of ESCC and their paired adjacent tissues were from Gene Expression Omnibus (GEO) database and National Genomics Data Center-Genome Sequence Archive(NGDC-GSA)database. Lentivirus was used to generate En1 stable knockout cell lines KYSE180 and KYSE450. The proliferation ability of the cells was detected by cell counting kit 8 and clone formation assay. The migration ability of the cells was detected by Transwell assay. The effect of En1 on the proliferation of ESCC was detected by xenograft experiment in BALB/c-nu/nu mice. Real-time fluorescence quantitative polymerase chain reaction (RT-qPCR) was used to detect the expressions of En1, glioma-associated oncogene family zinc finger 1 (GLI1), glioma-associated oncogene family zinc finger 2 (GLI2) and smoothened (SMO). Results: Pan-cancer data from TCGA showed that patients with low En1 expression had longer overall survival and progression-free survival than patients with high En1 expression (P< 0.001). Data from GEO and GSA databases also showed a high expression level of En1 in ESCC tissues compared with paired tissues (P<0.001). Proliferation was inhibited after knockout of En1 in KYSE180 and KYSE450 cells (P<0.001). The colony formation numbers decreased. The colony formation numbers of KYSE180 cells in the shEn1#1 group and the shEn1#2 group were 138.33±23.07 and 127.00±19.70, respectively, significantly lower than that of the shNC group 340.67±12.06 (P<0.001). The colony formation numbers of KYSE450 cells in the shEn1#1 group and the shEn1#2 group were 65.33±2.52 and 9.00±3.00, respectively, significantly lower than that of the shNC group 139.00±13.00 (P<0.001). The migration numbers was inhibited after knockout of En1 [the Transwell numbers of KYSE180 cells in the shEn1#1 group and the shEn1#2 group were 66.67±12.66 and 71.33±11.02, respectively, significantly lower than that of the shNC group 334.67±16.56 (P<0.001). The Transwell numbers of KYSE450 cells in the shEn1#1 group and the shEn1#2 group were 112.33±14.57 and 54.33±5.51, respectively, significantly lower than that of the shNC group 253.33±21.03 (P<0.001)]. Xenograft model showed a slower growth rate of shEn1#1 and shEn1#2 cell lines (P<0.001). The tumor weights of KYSE450 cells in the shEn1#1 group and the shEn1#2 group were (0.046±0.026)g and (0.047±0.025)g, respectively, significantly lower than that of the shNC group (0.130±0.038)g (P<0.001). After knockdown of En1, the relative expression levels of GLI1 in KYSE180 cells of the shEn1#1 group and the shEn1#2 group were 0.326±0.162 and 0.322±0.133, and the relative expression levels of GLI1 in KYSE450 cells of the shEn1#1 and shEn1#2 groups were 0.131±0.006 and 0.352±0.050, respectively, which were all lower than that in the shNC group (P<0.01). After knockdown of En1, overexpression of GLI1 attenuated the inhibitory effect of knockdown of En1 on cell proliferation (P<0.001), colony formation[the colony formation numbers of the shEn1#1-GLI1 group were 151.00±9.54, higher than 102.33±10.02 (P=0.004) of the shEn1#1-vector group] and migration [the migration numbers of the shEn1#1-GLI1 group were 193.67±10.07, higher than 109.33±11.50 (P<0.001) in the shEn1#1-vector group]. In clinical samples of ESCC, major regulatory factors of the Hedgehog pathway were up-regulated and the pathway was activated. Conclusion: En1 promotes the proliferation and migration of ESCC cells by regulating the Hedgehog pathway and can be used as a new potential target for targeted therapy of ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Glioma , Animais , Humanos , Camundongos , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/patologia , Regulação Neoplásica da Expressão Gênica , Glioma/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo
11.
Photobiomodul Photomed Laser Surg ; 42(2): 159-167, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38301211

RESUMO

Objective: The submandibular gland (SMG) produces the most saliva, and factors such as aging and chemotherapy can affect its structure and function. However, there are only temporary treatments available for salivary hypofunction. This study aimed to evaluate the effects of photobiomodulation (PBM) on the function of SMG by using a rat animal model and vismodegib, an antagonist of the sonic hedgehog (SHH) pathway. Methods: Vismodegib (10 mg/kg) drug was gavaged orally for 14 days in rats to significantly decrease the SHH signaling proteins [SHH, protein patched homolog 1 (PTCH1), smoothened protein (SMO), glioma-associated oncogene homolog 1 (GLI1)], induce damage in SMG tissue, and affect salivary functional markers AQP5 and Keratin5. After that, in conjunction with vismodegib administration, PBM was performed using an 850 nm high-power light-emitting diode (LED) device treated daily for 6 days at varying total energy densities of 60, 120, and 180 J/cm2 in at least 3 rats per group. The test results were confirmed by Western blot, immunofluorescence staining, and hematoxylin and eosin staining, and the statistics were t-test or one-way analysis of variance (ANOVA) with Tukey's multiple comparisons tests. Results: Significant decreases in the expression of SHH-related proteins (PTCH1, SMO, GLI1, p < 0.05) with damage of SMG ductal cells were observed with vismodegib administration. However, a significant increase in the expression levels of SHH-related proteins (SHH, SMO, GLI1, p < 0.05) and recovery of SMG ductal cells damaged after vismodegib administration were observed for PBM-treated groups. Salivary functional marker AQP5 also showed the same increase or decrease. Conclusions: This study found that vismodegib damages SMG ductal cells and decreases SHH-related proteins and associated salivary functional markers. Also, 850 nm high-power LED recovered the damaged structure of SMG and increased SHH-related proteins and salivary functional markers. The study results suggest that PBM can restore SMG structure and function through SHH signaling.


Assuntos
Anilidas , Terapia com Luz de Baixa Intensidade , Piridinas , Glândula Submandibular , Ratos , Animais , Glândula Submandibular/metabolismo , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/farmacologia , Transdução de Sinais
12.
Lasers Med Sci ; 39(1): 55, 2024 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-38308119

RESUMO

This study aimed to investigate the impact of ablative fractional laser (AFL) on hedgehog pathway gene expression in murine microscopic basal cell carcinomas (BCCs) and compare these results to the effect of topical treatment with vismodegib, an FDA-approved hedgehog inhibitor. In 25 mice, 1 cm2 skin test sites (n = 44) containing microscopic BCCs were exposed to one of three interventions: a single CO2 AFL treatment (1 pulse, 40 mJ/microbeam, wavelength 10.6 µm, 5% density, pulse rate 250 Hz, n = 12), eight topical vismodegib treatments (3.8 mg/mL, n = 8), or combination of AFL and vismodegib treatments (n = 9). Untreated controls were included for comparison (n = 15). After 4 days, skin samples were analyzed for hedgehog gene expression (Gli1, Gli2, and Ptch1) by qPCR and vismodegib concentrations by liquid chromatography mass spectrometry (data analyzed with two-tailed t-tests and linear regression). A single treatment with AFL monotherapy significantly reduced hedgehog gene expression compared to untreated controls (Gli1 72.4% reduction, p = 0.003; Gli2 55.2%, p = 0.010; Ptch1 70.9%, p < 0.001). Vismodegib treatment also reduced hedgehog gene expression (Gli1 91.6%; Gli2 83.3%; Ptch1 83.0%), significantly surpassing AFL monotherapy for two out of three genes (Gli1, p = 0.017; Gli2, p = 0.007; Ptch1, p = 0.15). AFL and vismodegib combination mirrored the effects of vismodegib monotherapy (Gli1, p = 0.424; Gli2, p = 0.289; Ptch1, p = 0.593), possibly due to comparable cutaneous vismodegib concentrations (mean ± SD, vismodegib monotherapy 850 ± 475 µmol/L; combination 1036 ± 824 µmol/L; p = 0.573). In conclusion, a single AFL treatment significantly reduced hedgehog gene expression in murine BCCs mimicking the effects of eight topical applications of vismodegib. Further studies are needed to assess whether AFL can be utilized for BCC treatment, either as monotherapy or in combination with other drugs.


Assuntos
Anilidas , Carcinoma Basocelular , Piridinas , Neoplasias Cutâneas , Animais , Camundongos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/uso terapêutico , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/genética , Expressão Gênica , Lasers
13.
Lasers Surg Med ; 56(3): 239-248, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38311811

RESUMO

BACKGROUND: Systemically delivered hedgehog inhibitors including vismodegib and sonidegib are widely used to treat basal cell carcinomas (BCCs). Ablative fractional laser (AFL)-assisted topical delivery of vismodegib has been demonstrated in preclinical studies. The aim of this explorative clinical study was to evaluate intratumoral vismodegib concentrations and effect on hedgehog pathway gene expression following AFL-assisted topical vismodegib delivery to BCCs. METHODS: In an open-label clinical trial, 16 nodular BCCs (in n = 9 patients) received one application of CO2 -AFL (40 mJ/microbeam, 10% density) followed by topical vismodegib emulsion. After 3-4 days, vismodegib concentrations in tumor biopsies (n = 15) and plasma were analyzed and compared with samples from patients receiving oral treatment (n = 3). GLI1, GLI2, PTCH1, and PTCH2 expression was determined by quantitative polymerase chain reaction (n = 7) and GLI1 additionally by in situ hybridization (n = 3). RESULTS: Following AFL-assisted topical administration, vismodegib was detected in 14/15 BCCs and reached a median concentration of 6.2 µmol/L, which compared to concentrations in BCC tissue from patients receiving oral vismodegib (9.5 µmol/L, n = 3, p = 0.8588). Topical vismodegib reduced intratumoral GLI1 expression by 51%, GLI2 by 55%, PTCH1 and PTCH2 each by 73% (p ≤ 0.0304) regardless of vismodegib concentrations (p ≥ 0.3164). In situ hybridization demonstrated that GLI1 expression was restricted to tumor tissue and downregulated in response to vismodegib exposure. CONCLUSION: A single AFL-assisted topical application of vismodegib resulted in clinically relevant intratumoral drug concentrations and significant reductions in hedgehog pathway gene expressions.


Assuntos
Anilidas , Antineoplásicos , Carcinoma Basocelular , Lasers de Gás , Piridinas , Neoplasias Cutâneas , Humanos , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/uso terapêutico , Neoplasias Cutâneas/tratamento farmacológico , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/uso terapêutico , Carcinoma Basocelular/tratamento farmacológico , Carcinoma Basocelular/genética , Carcinoma Basocelular/patologia , Antineoplásicos/efeitos adversos , Expressão Gênica
14.
J Dent Res ; 103(3): 279-288, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38284236

RESUMO

Periodontal mesenchymal stem cells (MSCs) play a crucial role in maintaining periodontium homeostasis and in tissue repair. However, little is known about how periodontal MSCs in vivo respond under periodontal disease conditions, posing a challenge for periodontium tissue regeneration. In this study, Gli1 was used as a periodontal MSC marker and combined with a Gli1-cre ERT2 mouse model for lineage tracing to investigate periodontal MSC fate in an induced periodontitis model. Our findings show significant changes in the number and contribution of Gli1+ MSCs within the inflamed periodontium. The number of Gli1+ MSCs that contributed to periodontal ligament homeostasis decreased in the periodontitis-induced teeth. While the proliferation of Gli1+ MSCs had no significant difference between the periodontitis and the control groups, more Gli1+ MSCs underwent apoptosis in diseased teeth. In addition, the number of Gli1+ MSCs for osteogenic differentiation decreased during the progression of periodontitis. Following tooth extraction, the contribution of Gli1+ MSCs to the tooth socket repair was significantly reduced in the periodontitis-induced teeth. Collectively, these findings indicate that the function of Gli1+ MSCs in periodontitis was compromised, including reduced contribution to periodontium homeostasis and impaired injury response.


Assuntos
Células-Tronco Mesenquimais , Periodontite , Camundongos , Animais , Proteína GLI1 em Dedos de Zinco , Osteogênese , Periodonto/fisiologia , Células-Tronco Mesenquimais/fisiologia , Ligamento Periodontal
15.
Surg Pathol Clin ; 17(1): 13-24, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38278602

RESUMO

GLI1-altered mesenchymal tumors comprise an emerging group of neoplasms characterized by fusions or amplifications involving GLI1, a gene that encodes a key regulator of the Hedgehog signaling pathway. In recent years, tumors with GLI1 alterations have been reported across a variety of anatomic sites and a broad age range. Although these tumors can exhibit a wide morphologic spectrum and a variable immunophenotype, they frequently present with monomorphic ovoid cells arranged in distinctive nests with a rich, arborizing vascular network. Recent evidence indicates that they have the potential to metastasize, which suggests that they may be best considered a sarcoma.


Assuntos
Sarcoma , Neoplasias de Tecidos Moles , Humanos , Proteína GLI1 em Dedos de Zinco/genética , Proteínas Hedgehog/genética , Proteínas Hedgehog/metabolismo , Sarcoma/genética , Neoplasias de Tecidos Moles/patologia
16.
Cell Death Differ ; 31(2): 170-187, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38062245

RESUMO

The Sonic Hedgehog (SHH) pathway is crucial regulator of embryonic development and stemness. Its alteration leads to medulloblastoma (MB), the most common malignant pediatric brain tumor. The SHH-MB subgroup is the best genetically characterized, however the molecular mechanisms responsible for its pathogenesis are not fully understood and therapeutic benefits are still limited. Here, we show that the pro-oncogenic stemness regulator Spalt-like transcriptional factor 4 (SALL4) is re-expressed in mouse SHH-MB models, and its high levels correlate with worse overall survival in SHH-MB patients. Proteomic analysis revealed that SALL4 interacts with REN/KCTD11 (here REN), a substrate receptor subunit of the Cullin3-RING ubiquitin ligase complex (CRL3REN) and a tumor suppressor lost in ~30% of human SHH-MBs. We demonstrate that CRL3REN induces polyubiquitylation and degradation of wild type SALL4, but not of a SALL4 mutant lacking zinc finger cluster 1 domain (ΔZFC1). Interestingly, SALL4 binds GLI1 and cooperates with HDAC1 to potentiate GLI1 deacetylation and transcriptional activity. Notably, inhibition of SALL4 suppresses SHH-MB growth both in murine and patient-derived xenograft models. Our findings identify SALL4 as a CRL3REN substrate and a promising therapeutic target in SHH-dependent cancers.


Assuntos
Neoplasias Encefálicas , Neoplasias Cerebelares , Meduloblastoma , Animais , Humanos , Camundongos , Proteínas de Ciclo Celular , Neoplasias Cerebelares/genética , Neoplasias Cerebelares/patologia , Proteínas Hedgehog/metabolismo , Meduloblastoma/genética , Proteômica , Fatores de Transcrição/genética , Transferases , Proteína GLI1 em Dedos de Zinco/genética
17.
Cell Signal ; 114: 110998, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38048859

RESUMO

BACKGROUND: The primary challenge in prostate cancer (PCa) is tumor metastasis, which seriously affects the survival time of patients. Growing evidence suggests that microRNAs play a crucial regulatory role in various malignancies and that the tumor suppressor miR-361-3p is responsible for regulating migration, proliferation, and invasion in different cancer types. However, the underlying regulatory mechanism of miR-361-3p in PCa remains unknown. METHODS: The expression of miR-361-3p in PCa cells was analyzed using quantitative real time-polymerase chain reaction. The clinical utility of miR-361-3p in PCa was evaluated using in vitro assays. The mechanism of action of miR-361-3p was investigated using western blotting, luciferase reporter assays, immunofluorescence, and rescue studies. RESULTS: The function, invasiveness, migration, and proliferation of PCa cells, as well as epithelial-mesenchymal transition (EMT), were aided by the downregulation of miR-361-3p, whereas its overexpression exerted the opposite effect. Repression of glioma-associated oncogene homolog 1 (Gli1) expression by miR-361-3p led to activation of the protein kinase B/mammalian target of rapamycin (AKT/mTOR) signaling pathway, triggering EMT and promoting PCa metastasis. CONCLUSIONS: Downregulation of miR-361-3p along the Gli1 axis promoted tumor malignancy. Collectively, the results of this study imply that miR-361-3p has the potential to be both a biomarker and therapeutic target in PCa.


Assuntos
MicroRNAs , Neoplasias da Próstata , Masculino , Humanos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Sirolimo , Movimento Celular/genética , Proliferação de Células/genética , MicroRNAs/metabolismo , Transdução de Sinais , Neoplasias da Próstata/patologia , Serina-Treonina Quinases TOR/metabolismo , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica
18.
Mod Pathol ; 37(2): 100386, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37992966

RESUMO

Mesenchymal tumors with GLI1 fusions or amplifications have recently emerged as a distinctive group of neoplasms. The terms GLI1-altered mesenchymal tumor or GLI1-altered soft tissue tumor serve as a nosological category, although the exact boundaries/criteria require further elucidation. We examined 16 tumors affecting predominantly adults (median age: 40 years), without sex predilection. Several patients had tumors of longstanding duration (>10 years). The most common primary site was soft tissue (n = 9); other sites included epidural tissue (n = 1), vertebra (n = 1), tongue (n = 1), hard palate (n = 1), and liver (n = 1). Histologically, the tumors demonstrated multinodular growth of cytologically uniform, ovoid-to-epithelioid, occasionally short spindled cells with delicate intratumoral vasculature and frequent myxoid stroma. Mitotic activity ranged from 0 to 8 mitoses/2 mm2 (mean 2). Lymphovascular invasion/protrusion of tumor cells into endothelial-lined vascular spaces was present or suspected in 6 cases. Necrosis, significant nuclear pleomorphism, or well-developed, fascicular spindle-cell growth were absent. Half demonstrated features of the newly proposed subset, "distinctive nested glomoid neoplasm." Tumors were consistently positive for CD56 (n = 5/5). A subset was stained with S100 protein (n = 7/13), SMA (n = 6/13), keratin (n = 2/9), EMA (n = 3/7), and CD99 (n = 2/6). Tumors harbored ACTB::GLI1 (n = 15) or PTCH1::GLI1 (n = 1) fusions. The assays used did not capture cases defined by GLI1 amplification. We also identified recurrent cytogenetic gains (1q, 5, 7, 8, 12, 12q13.2-ter, 21, and X). For patients with available clinical follow-up (n = 8), half were disease free. Half demonstrated distant metastases (lungs, bone, or soft tissue). Of cases without follow-up (n = 8), 2 were known recurrences, and 1 was presumed metastasis. Our results imply a more aggressive biological potential than currently reported. Given the possibility for metastasis and disease progression, even in cytologically bland, nested tumors, close clinical surveillance, akin to that for sarcoma management, may be indicated. The term GLI1-altered mesenchymal tumor with malignant potential is proposed.


Assuntos
Neoplasias de Tecido Conjuntivo e de Tecidos Moles , Sarcoma , Neoplasias de Tecidos Moles , Adulto , Humanos , Proteína GLI1 em Dedos de Zinco/genética , Neoplasias de Tecidos Moles/genética , Neoplasias de Tecidos Moles/patologia , Proteínas S100 , Sarcoma/patologia , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/análise
19.
Hepatology ; 79(1): 61-78, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36683360

RESUMO

BACKGROUND AND AIMS: Deregulation of adenosine-to-inosine editing by adenosine deaminase acting on RNA 1 (ADAR1) leads to tumor-specific transcriptome diversity with prognostic values for HCC. However, ADAR1 editase-dependent mechanisms governing liver cancer stem cell (LCSC) generation and maintenance have remained elusive. APPROACH AND RESULTS: RNA-seq profiling identified ADAR1-responsive recoding editing events in HCC and showed editing frequency of GLI1 , rather than transcript abundance was clinically relevant. Functional differences in LCSC self-renewal and tumor aggressiveness between wild-type (GLI1 wt ) and edited GLI1 (GLI1 edit ) were elucidated. We showed that overediting of GLI1 induced an arginine-to-glycine (R701G) substitution, augmenting tumor-initiating potential and exhibiting a more aggressive phenotype. GLI1 R701G harbored weak affinity to SUFU, which in turn, promoted its cytoplasmic-to-nuclear translocation to support LCSC self-renewal by increased pluripotency gene expression. Moreover, editing predisposed to stabilize GLI1 by abrogating ß-TrCP-GLI1 interaction. Integrative analysis of single-cell transcriptome further revealed hyperactivated mitophagy in ADAR1-enriched LCSCs. GLI1 editing promoted a metabolic switch to oxidative phosphorylation to control stress and stem-like state through PINK1-Parkin-mediated mitophagy in HCC, thereby conferring exclusive metastatic and sorafenib-resistant capacities. CONCLUSIONS: Our findings demonstrate a novel role of ADAR1 as an active regulator for LCSCs properties through editing GLI1 in the highly heterogeneous HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Neoplasias Hepáticas/patologia , Carcinoma Hepatocelular/patologia , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteínas de Ligação a RNA/metabolismo , Mitofagia , Células-Tronco Neoplásicas/metabolismo
20.
J Investig Med ; 72(2): 181-192, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37724700

RESUMO

Constitutive activation of Hedgehog (Hh) signaling has been implicated in many cancers including hepatocellular carcinoma (HCC). Among them, the terminal glioma-associated oncogene homolog 1 (Gli1) regulates the expression of critical genes in the Hh pathway. The current study aims to evaluate the anti-HCC effect of the Gli1 inhibitor, GANT61. In vitro analysis including cell counting kit-8 (CCK-8) assay, flow cytometry, and migration and invasion assay were adopted to evaluate the effect of GANT61 on HCC cell lines. In vivo, xenograft studies were also performed to verify the effect of GANT61 on HCC. By CCK-8 assay, we found that GANT61 could significantly reduce the growth of HCC cell lines Huh7 and hemophagocytic lymphohistiocytosis (HLE), and their IC50 concentrations were 4.481 and 6.734 µM, respectively. Flow cytometry shows that GANT61 induced cell cycle arrest in the G2/M phase and accelerated apoptosis of both HLE and Huh7 cells. While migration and invasion assay shows that GANT61 weakens cells' migration and invasion ability. Besides that, GANT61 inhibits the expression of Gli1, FoxM1, CyclinD1, and Bcl-2, upregulates the level of Bax protein, and also reverses the epithelial-mesenchymal transition program by downregulating the expression of Vimentin and N-Cadherin and upregulating the expression of epithelial E-Cadherin expression. Furthermore, GANT61 inhibits the growth of subcutaneous xenografts of Huh7 cells in nude mice. Overall, this study suggests that Gli1 is a potential target for therapy and GANT61 shows promising therapeutic potential for future treatment in HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Piridinas , Pirimidinas , Animais , Camundongos , Humanos , Carcinoma Hepatocelular/metabolismo , Proteína GLI1 em Dedos de Zinco/genética , Proteína GLI1 em Dedos de Zinco/metabolismo , Proteína GLI1 em Dedos de Zinco/farmacologia , Proteínas Hedgehog/metabolismo , Proteínas Hedgehog/farmacologia , Neoplasias Hepáticas/metabolismo , Camundongos Nus , Linhagem Celular Tumoral , Proliferação de Células
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...